3.93 \(\int \frac{(d+e x^2)^2 (a+b \text{csch}^{-1}(c x))}{x^8} \, dx\)

Optimal. Leaf size=249 \[ -\frac{d^2 \left (a+b \text{csch}^{-1}(c x)\right )}{7 x^7}-\frac{2 d e \left (a+b \text{csch}^{-1}(c x)\right )}{5 x^5}-\frac{e^2 \left (a+b \text{csch}^{-1}(c x)\right )}{3 x^3}-\frac{2 b c^3 \sqrt{-c^2 x^2-1} \left (360 c^4 d^2-1176 c^2 d e+1225 e^2\right )}{11025 \sqrt{-c^2 x^2}}+\frac{b c \sqrt{-c^2 x^2-1} \left (360 c^4 d^2-1176 c^2 d e+1225 e^2\right )}{11025 x^2 \sqrt{-c^2 x^2}}+\frac{b c d^2 \sqrt{-c^2 x^2-1}}{49 x^6 \sqrt{-c^2 x^2}}-\frac{2 b c d \sqrt{-c^2 x^2-1} \left (15 c^2 d-49 e\right )}{1225 x^4 \sqrt{-c^2 x^2}} \]

[Out]

(-2*b*c^3*(360*c^4*d^2 - 1176*c^2*d*e + 1225*e^2)*Sqrt[-1 - c^2*x^2])/(11025*Sqrt[-(c^2*x^2)]) + (b*c*d^2*Sqrt
[-1 - c^2*x^2])/(49*x^6*Sqrt[-(c^2*x^2)]) - (2*b*c*d*(15*c^2*d - 49*e)*Sqrt[-1 - c^2*x^2])/(1225*x^4*Sqrt[-(c^
2*x^2)]) + (b*c*(360*c^4*d^2 - 1176*c^2*d*e + 1225*e^2)*Sqrt[-1 - c^2*x^2])/(11025*x^2*Sqrt[-(c^2*x^2)]) - (d^
2*(a + b*ArcCsch[c*x]))/(7*x^7) - (2*d*e*(a + b*ArcCsch[c*x]))/(5*x^5) - (e^2*(a + b*ArcCsch[c*x]))/(3*x^3)

________________________________________________________________________________________

Rubi [A]  time = 0.196614, antiderivative size = 249, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 7, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {270, 6302, 12, 1265, 453, 271, 264} \[ -\frac{d^2 \left (a+b \text{csch}^{-1}(c x)\right )}{7 x^7}-\frac{2 d e \left (a+b \text{csch}^{-1}(c x)\right )}{5 x^5}-\frac{e^2 \left (a+b \text{csch}^{-1}(c x)\right )}{3 x^3}-\frac{2 b c^3 \sqrt{-c^2 x^2-1} \left (360 c^4 d^2-1176 c^2 d e+1225 e^2\right )}{11025 \sqrt{-c^2 x^2}}+\frac{b c \sqrt{-c^2 x^2-1} \left (360 c^4 d^2-1176 c^2 d e+1225 e^2\right )}{11025 x^2 \sqrt{-c^2 x^2}}+\frac{b c d^2 \sqrt{-c^2 x^2-1}}{49 x^6 \sqrt{-c^2 x^2}}-\frac{2 b c d \sqrt{-c^2 x^2-1} \left (15 c^2 d-49 e\right )}{1225 x^4 \sqrt{-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x^2)^2*(a + b*ArcCsch[c*x]))/x^8,x]

[Out]

(-2*b*c^3*(360*c^4*d^2 - 1176*c^2*d*e + 1225*e^2)*Sqrt[-1 - c^2*x^2])/(11025*Sqrt[-(c^2*x^2)]) + (b*c*d^2*Sqrt
[-1 - c^2*x^2])/(49*x^6*Sqrt[-(c^2*x^2)]) - (2*b*c*d*(15*c^2*d - 49*e)*Sqrt[-1 - c^2*x^2])/(1225*x^4*Sqrt[-(c^
2*x^2)]) + (b*c*(360*c^4*d^2 - 1176*c^2*d*e + 1225*e^2)*Sqrt[-1 - c^2*x^2])/(11025*x^2*Sqrt[-(c^2*x^2)]) - (d^
2*(a + b*ArcCsch[c*x]))/(7*x^7) - (2*d*e*(a + b*ArcCsch[c*x]))/(5*x^5) - (e^2*(a + b*ArcCsch[c*x]))/(3*x^3)

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 6302

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcCsch[c*x], u, x] - Dist[(b*c*x)/Sqrt[-(c^2*x^2)], Int[Simp
lifyIntegrand[u/(x*Sqrt[-1 - c^2*x^2]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] &&
!(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0]))
 || (ILtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1265

Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Wit
h[{Qx = PolynomialQuotient[(a + b*x^2 + c*x^4)^p, f*x, x], R = PolynomialRemainder[(a + b*x^2 + c*x^4)^p, f*x,
 x]}, Simp[(R*(f*x)^(m + 1)*(d + e*x^2)^(q + 1))/(d*f*(m + 1)), x] + Dist[1/(d*f^2*(m + 1)), Int[(f*x)^(m + 2)
*(d + e*x^2)^q*ExpandToSum[(d*f*(m + 1)*Qx)/x - e*R*(m + 2*q + 3), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q},
 x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && LtQ[m, -1]

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 271

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x^(m + 1)*(a + b*x^n)^(p + 1))/(a*(m + 1)), x]
 - Dist[(b*(m + n*(p + 1) + 1))/(a*(m + 1)), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \frac{\left (d+e x^2\right )^2 \left (a+b \text{csch}^{-1}(c x)\right )}{x^8} \, dx &=-\frac{d^2 \left (a+b \text{csch}^{-1}(c x)\right )}{7 x^7}-\frac{2 d e \left (a+b \text{csch}^{-1}(c x)\right )}{5 x^5}-\frac{e^2 \left (a+b \text{csch}^{-1}(c x)\right )}{3 x^3}-\frac{(b c x) \int \frac{-15 d^2-42 d e x^2-35 e^2 x^4}{105 x^8 \sqrt{-1-c^2 x^2}} \, dx}{\sqrt{-c^2 x^2}}\\ &=-\frac{d^2 \left (a+b \text{csch}^{-1}(c x)\right )}{7 x^7}-\frac{2 d e \left (a+b \text{csch}^{-1}(c x)\right )}{5 x^5}-\frac{e^2 \left (a+b \text{csch}^{-1}(c x)\right )}{3 x^3}-\frac{(b c x) \int \frac{-15 d^2-42 d e x^2-35 e^2 x^4}{x^8 \sqrt{-1-c^2 x^2}} \, dx}{105 \sqrt{-c^2 x^2}}\\ &=\frac{b c d^2 \sqrt{-1-c^2 x^2}}{49 x^6 \sqrt{-c^2 x^2}}-\frac{d^2 \left (a+b \text{csch}^{-1}(c x)\right )}{7 x^7}-\frac{2 d e \left (a+b \text{csch}^{-1}(c x)\right )}{5 x^5}-\frac{e^2 \left (a+b \text{csch}^{-1}(c x)\right )}{3 x^3}-\frac{(b c x) \int \frac{6 d \left (15 c^2 d-49 e\right )-245 e^2 x^2}{x^6 \sqrt{-1-c^2 x^2}} \, dx}{735 \sqrt{-c^2 x^2}}\\ &=\frac{b c d^2 \sqrt{-1-c^2 x^2}}{49 x^6 \sqrt{-c^2 x^2}}-\frac{2 b c d \left (15 c^2 d-49 e\right ) \sqrt{-1-c^2 x^2}}{1225 x^4 \sqrt{-c^2 x^2}}-\frac{d^2 \left (a+b \text{csch}^{-1}(c x)\right )}{7 x^7}-\frac{2 d e \left (a+b \text{csch}^{-1}(c x)\right )}{5 x^5}-\frac{e^2 \left (a+b \text{csch}^{-1}(c x)\right )}{3 x^3}-\frac{\left (b c \left (-360 c^4 d^2+1176 c^2 d e-1225 e^2\right ) x\right ) \int \frac{1}{x^4 \sqrt{-1-c^2 x^2}} \, dx}{3675 \sqrt{-c^2 x^2}}\\ &=\frac{b c d^2 \sqrt{-1-c^2 x^2}}{49 x^6 \sqrt{-c^2 x^2}}-\frac{2 b c d \left (15 c^2 d-49 e\right ) \sqrt{-1-c^2 x^2}}{1225 x^4 \sqrt{-c^2 x^2}}+\frac{b c \left (360 c^4 d^2-1176 c^2 d e+1225 e^2\right ) \sqrt{-1-c^2 x^2}}{11025 x^2 \sqrt{-c^2 x^2}}-\frac{d^2 \left (a+b \text{csch}^{-1}(c x)\right )}{7 x^7}-\frac{2 d e \left (a+b \text{csch}^{-1}(c x)\right )}{5 x^5}-\frac{e^2 \left (a+b \text{csch}^{-1}(c x)\right )}{3 x^3}+\frac{\left (2 b c^3 \left (-360 c^4 d^2+1176 c^2 d e-1225 e^2\right ) x\right ) \int \frac{1}{x^2 \sqrt{-1-c^2 x^2}} \, dx}{11025 \sqrt{-c^2 x^2}}\\ &=-\frac{2 b c^3 \left (360 c^4 d^2-1176 c^2 d e+1225 e^2\right ) \sqrt{-1-c^2 x^2}}{11025 \sqrt{-c^2 x^2}}+\frac{b c d^2 \sqrt{-1-c^2 x^2}}{49 x^6 \sqrt{-c^2 x^2}}-\frac{2 b c d \left (15 c^2 d-49 e\right ) \sqrt{-1-c^2 x^2}}{1225 x^4 \sqrt{-c^2 x^2}}+\frac{b c \left (360 c^4 d^2-1176 c^2 d e+1225 e^2\right ) \sqrt{-1-c^2 x^2}}{11025 x^2 \sqrt{-c^2 x^2}}-\frac{d^2 \left (a+b \text{csch}^{-1}(c x)\right )}{7 x^7}-\frac{2 d e \left (a+b \text{csch}^{-1}(c x)\right )}{5 x^5}-\frac{e^2 \left (a+b \text{csch}^{-1}(c x)\right )}{3 x^3}\\ \end{align*}

Mathematica [A]  time = 0.259464, size = 152, normalized size = 0.61 \[ \frac{-105 a \left (15 d^2+42 d e x^2+35 e^2 x^4\right )+b c x \sqrt{\frac{1}{c^2 x^2}+1} \left (-45 d^2 \left (16 c^6 x^6-8 c^4 x^4+6 c^2 x^2-5\right )+294 d e x^2 \left (8 c^4 x^4-4 c^2 x^2+3\right )+1225 e^2 x^4 \left (1-2 c^2 x^2\right )\right )-105 b \text{csch}^{-1}(c x) \left (15 d^2+42 d e x^2+35 e^2 x^4\right )}{11025 x^7} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x^2)^2*(a + b*ArcCsch[c*x]))/x^8,x]

[Out]

(-105*a*(15*d^2 + 42*d*e*x^2 + 35*e^2*x^4) + b*c*Sqrt[1 + 1/(c^2*x^2)]*x*(1225*e^2*x^4*(1 - 2*c^2*x^2) + 294*d
*e*x^2*(3 - 4*c^2*x^2 + 8*c^4*x^4) - 45*d^2*(-5 + 6*c^2*x^2 - 8*c^4*x^4 + 16*c^6*x^6)) - 105*b*(15*d^2 + 42*d*
e*x^2 + 35*e^2*x^4)*ArcCsch[c*x])/(11025*x^7)

________________________________________________________________________________________

Maple [A]  time = 0.207, size = 223, normalized size = 0.9 \begin{align*}{c}^{7} \left ({\frac{a}{{c}^{4}} \left ( -{\frac{{d}^{2}}{7\,{c}^{3}{x}^{7}}}-{\frac{2\,de}{5\,{c}^{3}{x}^{5}}}-{\frac{{e}^{2}}{3\,{c}^{3}{x}^{3}}} \right ) }+{\frac{b}{{c}^{4}} \left ( -{\frac{{\rm arccsch} \left (cx\right ){d}^{2}}{7\,{c}^{3}{x}^{7}}}-{\frac{2\,{\rm arccsch} \left (cx\right )de}{5\,{c}^{3}{x}^{5}}}-{\frac{{\rm arccsch} \left (cx\right ){e}^{2}}{3\,{c}^{3}{x}^{3}}}-{\frac{ \left ({c}^{2}{x}^{2}+1 \right ) \left ( 720\,{c}^{10}{d}^{2}{x}^{6}-2352\,{c}^{8}de{x}^{6}-360\,{c}^{8}{d}^{2}{x}^{4}+2450\,{c}^{6}{e}^{2}{x}^{6}+1176\,{c}^{6}de{x}^{4}+270\,{c}^{6}{d}^{2}{x}^{2}-1225\,{c}^{4}{e}^{2}{x}^{4}-882\,{c}^{4}de{x}^{2}-225\,{d}^{2}{c}^{4} \right ) }{11025\,{c}^{8}{x}^{8}}{\frac{1}{\sqrt{{\frac{{c}^{2}{x}^{2}+1}{{c}^{2}{x}^{2}}}}}}} \right ) } \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^2*(a+b*arccsch(c*x))/x^8,x)

[Out]

c^7*(a/c^4*(-1/7*d^2/c^3/x^7-2/5/c^3*d*e/x^5-1/3*e^2/c^3/x^3)+b/c^4*(-1/7*arccsch(c*x)*d^2/c^3/x^7-2/5*arccsch
(c*x)/c^3*d*e/x^5-1/3*arccsch(c*x)*e^2/c^3/x^3-1/11025*(c^2*x^2+1)*(720*c^10*d^2*x^6-2352*c^8*d*e*x^6-360*c^8*
d^2*x^4+2450*c^6*e^2*x^6+1176*c^6*d*e*x^4+270*c^6*d^2*x^2-1225*c^4*e^2*x^4-882*c^4*d*e*x^2-225*c^4*d^2)/((c^2*
x^2+1)/c^2/x^2)^(1/2)/c^8/x^8))

________________________________________________________________________________________

Maxima [A]  time = 1.04044, size = 313, normalized size = 1.26 \begin{align*} \frac{1}{245} \, b d^{2}{\left (\frac{5 \, c^{8}{\left (\frac{1}{c^{2} x^{2}} + 1\right )}^{\frac{7}{2}} - 21 \, c^{8}{\left (\frac{1}{c^{2} x^{2}} + 1\right )}^{\frac{5}{2}} + 35 \, c^{8}{\left (\frac{1}{c^{2} x^{2}} + 1\right )}^{\frac{3}{2}} - 35 \, c^{8} \sqrt{\frac{1}{c^{2} x^{2}} + 1}}{c} - \frac{35 \, \operatorname{arcsch}\left (c x\right )}{x^{7}}\right )} + \frac{2}{75} \, b d e{\left (\frac{3 \, c^{6}{\left (\frac{1}{c^{2} x^{2}} + 1\right )}^{\frac{5}{2}} - 10 \, c^{6}{\left (\frac{1}{c^{2} x^{2}} + 1\right )}^{\frac{3}{2}} + 15 \, c^{6} \sqrt{\frac{1}{c^{2} x^{2}} + 1}}{c} - \frac{15 \, \operatorname{arcsch}\left (c x\right )}{x^{5}}\right )} + \frac{1}{9} \, b e^{2}{\left (\frac{c^{4}{\left (\frac{1}{c^{2} x^{2}} + 1\right )}^{\frac{3}{2}} - 3 \, c^{4} \sqrt{\frac{1}{c^{2} x^{2}} + 1}}{c} - \frac{3 \, \operatorname{arcsch}\left (c x\right )}{x^{3}}\right )} - \frac{a e^{2}}{3 \, x^{3}} - \frac{2 \, a d e}{5 \, x^{5}} - \frac{a d^{2}}{7 \, x^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2*(a+b*arccsch(c*x))/x^8,x, algorithm="maxima")

[Out]

1/245*b*d^2*((5*c^8*(1/(c^2*x^2) + 1)^(7/2) - 21*c^8*(1/(c^2*x^2) + 1)^(5/2) + 35*c^8*(1/(c^2*x^2) + 1)^(3/2)
- 35*c^8*sqrt(1/(c^2*x^2) + 1))/c - 35*arccsch(c*x)/x^7) + 2/75*b*d*e*((3*c^6*(1/(c^2*x^2) + 1)^(5/2) - 10*c^6
*(1/(c^2*x^2) + 1)^(3/2) + 15*c^6*sqrt(1/(c^2*x^2) + 1))/c - 15*arccsch(c*x)/x^5) + 1/9*b*e^2*((c^4*(1/(c^2*x^
2) + 1)^(3/2) - 3*c^4*sqrt(1/(c^2*x^2) + 1))/c - 3*arccsch(c*x)/x^3) - 1/3*a*e^2/x^3 - 2/5*a*d*e/x^5 - 1/7*a*d
^2/x^7

________________________________________________________________________________________

Fricas [A]  time = 2.55013, size = 481, normalized size = 1.93 \begin{align*} -\frac{3675 \, a e^{2} x^{4} + 4410 \, a d e x^{2} + 1575 \, a d^{2} + 105 \,{\left (35 \, b e^{2} x^{4} + 42 \, b d e x^{2} + 15 \, b d^{2}\right )} \log \left (\frac{c x \sqrt{\frac{c^{2} x^{2} + 1}{c^{2} x^{2}}} + 1}{c x}\right ) +{\left (2 \,{\left (360 \, b c^{7} d^{2} - 1176 \, b c^{5} d e + 1225 \, b c^{3} e^{2}\right )} x^{7} -{\left (360 \, b c^{5} d^{2} - 1176 \, b c^{3} d e + 1225 \, b c e^{2}\right )} x^{5} - 225 \, b c d^{2} x + 18 \,{\left (15 \, b c^{3} d^{2} - 49 \, b c d e\right )} x^{3}\right )} \sqrt{\frac{c^{2} x^{2} + 1}{c^{2} x^{2}}}}{11025 \, x^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2*(a+b*arccsch(c*x))/x^8,x, algorithm="fricas")

[Out]

-1/11025*(3675*a*e^2*x^4 + 4410*a*d*e*x^2 + 1575*a*d^2 + 105*(35*b*e^2*x^4 + 42*b*d*e*x^2 + 15*b*d^2)*log((c*x
*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 1)/(c*x)) + (2*(360*b*c^7*d^2 - 1176*b*c^5*d*e + 1225*b*c^3*e^2)*x^7 - (360*b
*c^5*d^2 - 1176*b*c^3*d*e + 1225*b*c*e^2)*x^5 - 225*b*c*d^2*x + 18*(15*b*c^3*d^2 - 49*b*c*d*e)*x^3)*sqrt((c^2*
x^2 + 1)/(c^2*x^2)))/x^7

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \operatorname{acsch}{\left (c x \right )}\right ) \left (d + e x^{2}\right )^{2}}{x^{8}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**2*(a+b*acsch(c*x))/x**8,x)

[Out]

Integral((a + b*acsch(c*x))*(d + e*x**2)**2/x**8, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x^{2} + d\right )}^{2}{\left (b \operatorname{arcsch}\left (c x\right ) + a\right )}}{x^{8}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^2*(a+b*arccsch(c*x))/x^8,x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^2*(b*arccsch(c*x) + a)/x^8, x)